Holomorphic deformation of Hopf algebras and applications to quantum groups

نویسندگان

  • Markus J. Pflaum
  • Martin Schottenloher
چکیده

In this article we propose a new and so-called holomorphic deformation scheme for locally convex algebras and Hopf algebras. Essentially we regard converging power series expansion of a deformed product on a locally convex algebra, thus giving the means to actually insert complex values for the deformation parameter. Moreover we establish a topological duality theory for locally convex Hopf algebras. Examples coming from the theory of quantum groups are reconsidered within our holomorphic deformation scheme and topological duality theory. It is shown that all the standard quantum groups comprise holomorphic deformations. Furthermore we show that quantizing the function algebra of a (Poisson) Lie group and quantizing its universal enveloping algebra are topologically dual procedures indeed. Thus holomorphic deformation theory seems to be the appropriate language in which to describe quantum groups as deformed Lie groups or Lie algebras.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Duality Hopf Algebra for Holomorphic N=1 Special Geometries

We find a self-dual noncommutative and noncocommutative Hopf algebra HF acting as a universal symmetry on the modules over inner Frobenius algebras of modular categories (as used in two dimensional boundary conformal field theory) similar to the GrothendieckTeichmüller groupGT as introduced by Drinfeld as a universal symmetry of quasitriangular quasi-Hopf algebras. We discuss the relationship t...

متن کامل

Ternary Hopf Algebras

Properties of ternary semigroups, groups and algebras are briefly reviewed. It is shown that there exist three types of ternary units. A ternary analog of deformation is shortly discussed. Ternary coalgebras are defined in the most general manner, their classification with respect to the property “to be derived” is made. Three types of coassociativity and three kinds of counits are given. Terna...

متن کامل

Universal R–matrices for non-standard (1+1) quantum groups

A universal quasitriangular R–matrix for the non-standard quantum (1+1) Poincaré algebra Uziso(1, 1) is deduced by imposing analyticity in the deformation parameter z. A family gμ of “quantum graded contractions” of the algebra Uziso(1, 1)⊕U−ziso(1, 1) is obtained; this set of quantum algebras contains as Hopf subalgebras with two primitive translations quantum analogues of the two dimensional ...

متن کامل

Deformed Traces and Covariant Quantum Algebras for Quantum Groups

The q-deformed traces and orbits for the two parametric quantum groups GLqp(2) and GLqp(1|1) are defined. They are subsequently used in the construction of q-orbit invariants for these groups. General qp-(super)oscillator commutation relations are obtained which remain invariant under the co-actions of groups GLqp(2) and GLqp(1|1). The GLqp(2)-covariant deformed algebra is deduced in terms of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996